

Last time...

- Light can be seen as "waves" Wavelength λ , speed of light c, frequency ν (or f), Amplitude
- Light can also be seen as "particles" Photon: unit energy $E=h\nu$

Exercise from last class

1. What is rough order of magnitude of photon emitted from a light bulb per second? On average what is the time for one photon to be emitted?

Assume $\lambda = 600$ nm Photon energy $E = h\nu = 3.3 \times 10^{-19}$ J Assume power of the light bulb P = 10 W Number of photon emitted per second is $\frac{P}{E} = 3.0 \times 10^{19}$ s⁻¹

Exercise from last class

2. What is the absolute distance limit that you cannot see a signal light?

Assume signal power P = 100 W

Assume the area of human eyes $A_0 = 2 \text{ cm}^2$

At distance L, the power received by an observer is given by $P \times \frac{A_0}{4\pi L^2}$

Assume wavelength $\lambda = 600 \text{ nm}$

Number of photons captured by observer per second is $\frac{dN}{dt} = \frac{PA_0}{4\pi L^2} \times \frac{1}{h\nu} =$

$$\frac{PA_0\lambda}{4\pi hcL^2}$$

Human eye will integrate signal in a certain time interval, which can be estimated by the inverse of movie frame rate (24fps): $t_0 = \frac{1}{24}$ s ≈ 0.04 s.

The number of photon captured in this time interval is: $\frac{dN}{dt} \times t_0 = \frac{PA_0\lambda t_0}{4\pi hcL^2}$ For the signal to be "seen", this number has to be larger than 1:

$$\frac{\mathrm{d}N}{\mathrm{d}t} \times t_0 \ge 1$$

Which leads to $L \le 1.3 \times 10^4$ km The radius of Earth is 6371 km.

If we put $P = 4.5 \times 10^{26}$ W, which is the power output of the sun, we will have $L \le 3100$ l.y.

The farthest star human naked eyes can see is 16,308 l.y. away.

How does light interact with matter?

What describes light matter interaction?

- Refractive index
- ✓ Refractive index determines the diffraction angle at an interface:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

✓ Refractive index describes the change of speed of light in medium

$$c \to c/n$$

$$\lambda \to \frac{\lambda}{n}$$

$$\nu \to \nu$$

Light in air:
$$E = E_0 \cos \left(2\pi \left(vt - \frac{x}{\lambda} \right) \right) = E_0 \text{Re} \left[e^{-2\pi i \left(vt - \frac{x}{\lambda} \right)} \right]$$

Light in medium:
$$E' = E_0 \cos \left(2\pi \left(vt - \frac{x}{\lambda/n} \right) \right) = E_0 \text{Re} \left[e^{-2\pi i (vt - nx/\lambda)} \right]$$

Reflectance and Transmittance

- ✓ Refractive index also determines how much light is transmitted and how much is reflected
- \triangleright At normal incidence ($i = 0^{\circ}$) between air and a material (refractive index n)

$$r = \frac{E_r}{E_i} = \frac{1 - r}{1 + r}$$

$$t = \frac{E_t}{E_i} = \frac{2}{1+n}$$

> Some common refractive index:

Water 1.33

Oil ~1.5

CaCO₃ ~1.65

Silver ~0.04

https://refractiveindex.info

Other factors affecting r and t?

Questions

Why doesn't the frequency of light change in medium?

• Why $r + t \neq 1$

What if n is an imaginary value?

$$n \to n + i\kappa$$

Light in medium $E' = E_0 \ \mathrm{Re} \Big[e^{-2\pi i \left(ft - \frac{nx}{\lambda} \right) - \frac{2\pi \kappa x}{\lambda}} \Big] = E_0 \cos \left(2\pi \left(ft - \frac{x}{\lambda} \right) \right) e^{-2\pi \kappa x/\lambda}$
Electromagnetic wave amplitude decays with the increase of x

Absorption!

Refractive index is a function of light wavelength

The color of materials → selective reflection of light

Metals

diamond

Refractive index is a function of light wavelength

The color of materials → selective reflection of light

diamond

Wave – particle duality

Can particles be seen as waves?

Particle in a box

Standing waves

$$n\frac{\lambda}{2} = L \text{ or } \lambda = \frac{2L}{n}$$
 $n = 1,2,3...$

Discrete energy levels

$$E_n = \frac{h^2 n^2}{8mL^2}$$

For macroscopic L, the discreteness is negligible.

From Discrete energy levels to spectra

Toy model: a two level system

Take home message

- Refractive index
 - ✓ Refraction angle, transmission, reflection
- Imaginary part of refractive index
 - ✓ Absorption
- Wave-particle duality
- Energy levels are discrete

Realistic spectrum of energy levels

Jablonski diagram

Electronic Absorption and Emission Bands

